e bandd Holtwipe
Pascal

Frsprarmening Maral

BLS Pascal Programming Manual -1-

INDEX

B, INTRODUCTION ..ussewrasasusnanasasnnanstisrrannaserennnsas

[¥1]

1. BASIC ELEMENTS OF THE LANGUAGE ,..ccciuvsrramnusssrancurenas
1.1 SYMBDOLS svrvccosasvasasioronnssasssnreanasransas caenna
1.2 Reserved words and standard identifiers ...senvacnaces
1.3 S€peratOlS svesseoranmsssrararssensrensessorsratnstnans

LEL I -

2, USER DEFINED ELEMENTS ,secienvervareutorsnansassvrannttassres
2.1 TAenUIifierS iecccnissrovmnnosnsramasasnssnnitsnsanatas
2.2 NUMDELS +ewwnanssasnanan fersammritranamdsn e v an s an
2.3 SEYiNgS .c-vsssnariosorarassasranavisnarancrsssenanss .
2.8 COMMENES 4 eeucesrsranarisranssrasssarenristsnssmeissns

hon O T

T TYPES v ivevsrarisasnrsnnrsnssannas weravE st sy .
1 INCEQEerS .evureraranasaonamnastrararans feen e Prenas
2 REALS 4eueereraransssssnnsastsasanasisssnnsasstosnarss
3 Booleans ...isvecanan ievaraus fesvanebsaeman s seaserans
4 SEIINGE wvviserercacvssarsnavtronanasioranans vearanaen
5

AFFAYE +vinsrsnavsaronsnannsinsnassviosananissssararine

[= R SR RS R R R

3.5.,1 The MEM AITAY .srassviasssnnmnsannnnranssssaanny

4, THE DECLARATION PART .. eevoenncvasenanans cisrennarny cerans B
4,1 Label declaration part ..eeccaan ssnemanan esnsernanasss 9 i
4.2 Constant definition part ...eensravansvsssarans tvaevaas 9
4.3 Variable declaration part teeierasartrennannay 9 !
4.4 Procedure and function declaration part seocev.ivsssa. 18 I

5, EXPRESSIONS ..veinisersnnmasrssnanas PO O
5.1 The operator HOT Cevesraman g I 1
5.2 Multiplying OPerators .essesscnsssrarronassraarannacs 11
5.3 Adding operatorsS .eeevavaverssnanans st eranan caessanns 11
5.4 Relatiénal OpPeratorsS seesvesssracaricasrarcmvansrrnns 1l
5.5 Function designators ..ccaesravensasssaransnssnsernns 11

TATEMENTS v onuarvacrracactosransnnsoasnananascsnannssss 13

=

imple statementsveesvenmcasrasaraarisreanans erens 13 |
.1.1 Assignment statements- D A
. Procedure Statements ..ceisiensraravsnsananns .. 13
L1.3 GOTO statements sererrievsnasnassrsnancas vassnaa 13

2
3
4 INIT sStatements .esecarasersaanas etmesanmavena 14
5 Empty StLALEMENLS .eeerececiromnarssranrannnsas 15
ctured StAtEMEnES .. israreassresnavissrannans ves 15
1 Compound statements ceerananes PP e 15
2 Conditional statementsesse0vcn- teer e e . 15
6,2.2.1 IF statement5 ...eeveeans crerameen vees 15
6.2.2.2 CASE statements ..evesee-. P eenamnan casa 16
6.2.3 Repetitive statements ieersemsareraanans e 16
§.2.3.1 WHILE statements ...cesevnsnasssannaran 16
6.2.3.2 REPEAT statements ...,..... caren e eas 17
6.2.3.3 FOR statements P

7. PROCEDURES .servanavisernnana siennans Weasnammsssrrasnnanse 18
7.1 Procedure declarations ...isesasaes vieranaan cisevanss 18
7.1.1 Procedure headiNg .scsmcavissssanaviasnranns wo. 18

7.1.2 The declaration part ,..... isrsmanaas eseranaans 18

7.1.3 The statement part ..vececo.. deseraraaan sesevas 18

7.2 Standard ProCedUrES ..uvevarasrarsnsasanitsssensannas 18

2= BLS Pascal Programming Manual BLS Pascal Programming Manual -3-

B: INTRODUCTION
B, PUNCTIONS ,ivuvunssncnnnnmrosnoraansasuunmrnnarssnacacnvens 20
B.1l Function declarations .useciesavevrnvansanasnnnnenras 28

8.1,1 FUNCLion heAing suveseeesscmsnsveescononnsnnss 28 The Blue Label Software Pascal Language System is meant to offer
8.1.2 The declaration PALL cveevweveossesasassnernnnes 28 an alternative to BASIC, Not only will the user gain execution
8.1.3 The statement Part suvicscimvosevsasansesanennes 28 : speed, but he can also practise better programming technigues,
8.2 Standard fUNCEIiONS ..oseserasnnssvnrssnasassscncnsenss 28 as Pascal is far more versatile than BASIC.
8.2.1 Arithmetic fUNCLIONS v.vevrivrascnssncncnnrnnras 20
8.2.2 Integer functionNS .u..cevevevvevasransracunanns 21 As the BLS Pascal system is very compact {only 12K, hereof 5.5K
8.2.3 String functions .siseeecsascacansnssnansnasaanea 21 compiler}, it has not, of course, been possible to implement
Bu2.4 Transfer FUNCEIONS vvuvseensosenensonnnnrsnones 22 standard Pascal in full: The BLS Pascal subset does not support
8.2.5 Further standard functions ..uveveversenerasens 22 user defineable types, sets and file-types., However all of the
basic statement constructions are retained, and procedures and
9. PARAMETERSvuvsuvsnvnasurrosnsonensenssnsssssasnnnnnas 23 functions allow for both value and variable parameters. The
9.1 Formal and actual PArameterS -cueemvavresenavaravnanas 23 fundamental data types INTEGER, REAL and BOOLEAN are likewisge
9.2 Parametel tYDES5 ..usveonassasasasiassiicnvrnsncrarranes 23 supported, while the type CHAR has been replaced by the type
9.2.]1 Valve PAraMeters .uieesmvseosaosasaoassncasanen 23 STRING, which offers a more flexible character handling.
9.2.2 Variable parameters .ieuiisscvevsvssneransananes 23 . -
9.3 Rules applying toO PAraMeterB .usicceeeescscoavaasases 24 This manual fully defines the BLS Pascal subset, and should be

carefully studied before any programming efforts are made.

18. INPUT AND OUTPUT +.ovvemesnarsasarsosnssamrnnenesasnancnas 25
10.1 INPUL sueiesusunnmsnmevsaoassasasantnnsranasanassas 25
10.1.1 The procedure read .uiuieeavsvessosesasassea 25
18.1.2 The procedure readln .iiesacsssassssssnnnnss 25

1.2 Output cviieueavavonnsnvsnsverassassssssssssnnnanas 26
18.2.1 The procedure Write ...evsessssassvisaconaes 26
18.2.2 The procedure writeln ...veviesarasasancuven 27

18.3 Saving and 10ading ALLAYE .ueuicucnmesnerenanasnaras 27
18.3.1 The procedure SaVe .vwwssssvsassasssnsasasven 27
12.3.2 The procedure loadvevvvvsnnnasssassasas 27

Appendix A: BLS Pascal BYNEAX .cuvvrvacrasascscsacnnnnnnenes 28
Appendix B: Some uSeful TOULINES ..vevvvinrwevononrnanasanse 32

Appendix C: The system WOIKSBPACE ..ovvuvenenvavssnarsnasasss 34
Appendix D: Internal data formatcvecenrvnssesasascsnass 35
Appendix E: Machine code Subroutines .vuvicesciecncnncseness 37
Appendix F: Benchmark teBLS .oeavewearessnsvnerasasasnssnsans 39
Appendix G: Compiler ©rror MESSAGES5 .veasavresasasssansenens 42
Appendix H: Runtime €rIOr MESSAGES .curarennesererasasssrans 43

The Blue Label)l Software Pascal lLanguage System is copyrighted
and all rights are resetved by Poly-Data microcenter ApS. The
distribution and sale of this product are intended for use of
the original purchaser only. Copying, duplicating, selling or
otherwise distributing this product is a wiclation of law.

Copyright (C) 1981 Poly-Data microcenter ApS
Strandboulevarden 63, DK 21P8 Copenhagen O

Blue Labe]l Software is a trademark of Poly-Data microcenter ApS.

BLS Pascal Programming Manual

i: BASIC ELEMENTS OF THE LANGUAGE

1.1 SYMBOLS

The basic vocabul
classified into let

Letters:
Digits:
Symbols:

2]

+ =
| woer

ary of

Pascal consists of basic symbols

ters, digits, and special symbols:

Z
2
*

o

' t
3 56
/ < >

and '\',

The compiler does not differ between capital and non capital

letters.

Some operatores and delimiters are formed using two special

symbols:

1. < &= >=

..

2, {. and .} can be used instead of [and].
3. (* and *) can be used instead of { and }.

1.2 RESERVED WORDS AND STANDARD IDENTIFIERS

The reserved words listed below can not be used as user defined

identifiers;

AND
ARRAY
BEGIN
BOQLEAN
CASE
CODE
DIV

Do
DOWNTO
ELSE
END
EXOR

EXTERNAL
FCR
FUNCTION
GOTO

IF

INIT
INTEGER
LABEL
MOD

NOT

OF

OR

OTHERS
PROCEDURE
PROGRAM
REAL
REPEAT
SHIFT
STRING
THEN

TC
UNTIL
VAR
WHILE

Certain identifiers, called standard identifiers, are predefined
Unlike the reserved words these identifiers

{e.g. sin, cos).

can be redefined by the user:

abs
addr
arctan
call
chr
concat
cos
enpty
exp
false
frac
inp
int
keyboard

left
1n
load
maxint
mem
mid
odd
ord
out

pi
plot
point
pred
random

read
readln
right
round
save
sin
Eqr
sqrt
sUCC
true
trune
write
writeln

BLS Pascal Programming Manual -5~

1.3 SEPARATORS

Blanks, ends of lines, and comments are considered as
separators, At least one separator most occur between any pair
of consecutive identifiers, numbers or reserved words.

-6~ BLS Pascal Programming Manual

2t USER DEFINED ELEMENTS

2.1 IDENTIFIERS

Identifiers are names denoting constants, procedures, functions,
variables, and labels. They must begin with a letter, which may

be followed by any number of letters, digits, or '.'-characters,
Examples:

PASCAL Pascal NAME. 41 ,CODE
2,2 NUMBERS

Numbers may be written in both decimal and hexadecimal
notations. Hexadecimal numbers must be preceeded by a $-sign.
The letter E preceeding the scale factor is pronounced as 'times
18 to the power of'. Examples:

1 188 $25EC 8,138 S5E18 97 .13556E-8
No separators may occur within numbers.

2.3 STRINGS

Sequences of characters enclosed by single quote marks are
called strings., To include a quote mark in a string it should
be written twice. Examples:

'BLS Pascai' Al ‘A ' 'that''s all folks®

2.4 COMMENTS

A comment is a sequence of characters enclosed in curly brackets
{or (* and *)}, which can be removed f£rom +the program text
without altering its meaning. Example:

(* This is a comment *)

BLS Pascal Programming Manual -7-

3; DATA TYPES

A data type defines the set of values & wvariable may assume.
Every variable occuring in a program must be associated with one
and only one data type. BLS Pascal supports four basic data
types: Integer, real, booclean, and string.

3.1 INTEGERS

An integer is a whole number within the range -32768 to 32767.
When operating con integers overflow and underflow will not be
detected.

3.2 REALS
A real is a real number within one of these ranges:

-1.7914118346E+38 <= R <= -2,9387358770E-39%
R=4
2,9387358778E-39 <= R <= 1,7014118346E+38

Reals provide 11+ significant digits. If an overflow occurs
during an arithmetic operation involving reals, the program will
break and display an error message. If an underflow occursg the
result will be zero. :

3.3 BOOLEANS

A boolean variable should only assume the predefined values true
{-1) and false (@). However, asg BLS Pascal does not differ
between integers and booleans, a boolean variable c¢an assume
other values, but this is strongly discouraged.

3.4 STRINGS

When a string variable is declared one informs the compiler of
the maximum length it may assume (between 1 and 255). Examples:

STRING[32]
STRING[stringsize]

3.5 BRRAYS

An array 1s a structure consisting of a fixed number of
componente which are all of the same type, called the component
type. The elements of the array are designated by indices,
which are of the type integer. Upon declaration the upper and
lower bound o¢f each index 1is written seperated by '..'.
Examples:

BRRAY [1,.1@] OF INTEGER
ARRAY [@.,maxsize] OF STRING[32]
ARRAY [|-5..11,29,.45] OF REAL

Components in an n-dimensional array are designated by n integer
expressions. Examples:

datall2]
bli+j,7]

-8- BLS Pascal Programming Manual

names [pecinters[8],3]
3.5.1 The mem array

The mem array is a predefined ocne-dimensional array representing
memory. Each component designates a byte, whose address is
given by the index. Components of the mem array can only assume
values between # and 255, If a value greater than 255 is
assigned the actual value will only be the least significant 8
bits., Examples:

izr=mem[5COB] AND 516

FOR p:=1 TO lengthis) DO
memloffset+pl :=ord({mid(s,p,1));

BLS Pascal Programming Manual -9-

4: DECLARATIONS:

A program consists of 3 parts:

1. The program header
2. The declaration part
3. The statement part

The program heading gives the program & name and lists its
parameters, through which the program communicates with the
environment. Examples:

PROGRAM conversion;
PROGRAM calculation{input,output);

In BLS Pascal the program header is purely coptional, and if it
is used everything between the reserved word PROGRAM and the
first semicolon is considered as a comment.

Declarations must be listed in the following order:

1. Label declaraticn part

2. Constant definition part

3. Variable declaration part .

4, Procedure and function declaration part

Ncocne of the above mentioned parts need to be present (thus the
declaration part may be empty).

4.1. LABEL DECLARATICN PART

All labels used in the program nmust be declared in the label
declaration part, which is introduced by the reserved word
LABEL, A label may either be an identifier or an unsigned
number. Examples:

LABEL l,errcor,999,stop;

Any statement in the program may be prefixed by a label followed
by a colon (making possible a reference by a gote statement],
Examples:

$99: write('Done..."'};

A labe)l =should only be referenced within the block in which it
is declared.

4.2 CONSTANT DEFINITICN PART

A constant definition intioduces an identifier as a synonym for
a constant., The symbol CONST introduces the constant definition
part. Example:

CONST
number=45;
max=193.158;
min=-max;
name="Johnson';

-1lp- BLS Pascal Programming Manual

Predifined constants are as follows:

pi Real 3.1415926536.

true Boclean True (-1).

false Boolean False (B}.

maxint Integer 32767.

empty String '' {The empty string).

4.3 VARIABLE DECLARARTION PART

Every variable occuring in the program must be declared in the
variable declaration part, which is introduced by the reserved
word VAR, A variable declaration associates an identifier and a
data type to the varjable. More variables of the same data type
can be declared on the same line., Examples:

VAR
i,jrk: INTEGER;
xcoor,ycoor: RERL;
names: ARRAY [1..18@] CF STRING [32]

The variable is accessable throughout the entire block
containing the declaration, unless the identifier is redefined
in a subordinate block.

When entering a block all variables declared within the block
will cleared, e.g. reals and integers assumes the value 8,
booleans assumes the value false, and strings assumes the value
empty.

4.4 PROCEDURE AND FUNCTION DECLARATION PART

The procedure declaration serves to define procedures within the
cutrent procedure or program (see chapter 7). A procedure is
activated from a procedure statement (see chapter 6.1.2).

The function declaration part serves to define a program part
which compures and returns a value (see chapter 8). Functions
are activated by the evaluation of a function designator, which
is a constituent of an expression [see chapter 5.4).

BLS Pascal Programming Manual -11-

2: EXPRESSIONG

Expressions are constructs denoting rules of computatioen for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operateors and
operands, i.e. variables, constants, and functions.

The rules of composition specify operator precedences according
to four classes of operators, The NOT operator has the highest

precedence, followed by the multiplying operators
{* / DIV MOD AND SHIFT), then the adding gperators
{+ - CR EXOR}), and, finally, with the lowest precedence, the
relational operators (= <> > < »= <=}, A1l operators
allowing integers as operands will also allow booleans. Any
expression enclosed within parentheses is evaluated

independently of preceeding or succeeding operators.
5.1 THE NOT CPERATOR

The NOT operator denotes complementation of its operand, which
must be of the type integer or of the type boclean. Examples:

NOT true = false
NOT false = true
NOT 5 = -6
5.2 MULTIPLYING OPERATORS
Operator Operation Type of operands Type of result
* Multiplication real, integer teal, integer
7/ Division real, integer real
DIv Integer division integer integer
MOD Modulus integer integer
SHIFT bogical shift integer integer
AND Logical AND integer integer

The operaticn I SHIFT J has the following effect: I will be
shifted to the left J times, if J is positive, and -J times to
the right, if J is negative. Thus the result will always egual
zero if ABS{J} is greater than 15.

5.3 ADDING OPERATORS

Cperator Operation Type of operands Type of result
+ Addition real, integer real, integer

- Subtraction real, integer real, integer
OR Logical OR integer integer

EXOR Logical EXOR integer integer

When used as operatcrs with one operand only, - denotes sign

inversion, and + denotes the identity operation.
5.4 FUNCTION DESIGNATORS

& function designator specifies the activation of a function.

I R T I

. BLS Pascal Programming Manual ' -13-
~12- BLS Pascal Programming Manual
&: STATEMENTS
It consists of the identifier designating the functicn and a
list of actual parameters, The parameters are variables or
expressions, and are substituted for the corresponding formal Statements denote algorithmiec actions and are said to be
parameters. Examples: executable. They may be prefixed by a label which can be
referenced by a GOTO statement ([see chapter 6.1.3).
sin(y) *cos(x) *
concat ("Name: ',firstname,' ',surname) 6.1 SIMPLE STATEMENTS
arctan(l.8)*4.0
{sum{a,18@8)<5} AND (z=8) A simple statement is a statement of which no part constitutes

another statement. In this group are the assignment, procedure,
GOTO, INIT, and empty statements.

6,1.1 Assignment statements

The asgignment statement serves to replace the current value of
a variable or a function identifier by a new value specified as
an expression.

The wvariable (or functien} and the expression must be of
identical type, with the following exceptions being permitted:

1} If the type of the variable is real, the type of the
expression may be integer.

2] A string expression need not have the same length as the
maximum length o©f the string variable. If more
characters are assigned than specified by the maximum
length, only the lefmost characters will be transferred.

Example:
x:i=y+z {replace current value of x by sum of y and z}
6,1.2 Procedure statements

A procedure statement serves to execute the procedure denoted by
the procedure identifier. The procedure statement may contain a
list of actual parameters which are substituted in place of
their corresponding formal parameters {see chapter 9) defined in
the procedure declaration. Examples:

sort {names) ;
- exchange(x,y);
plot (x,round{sin{x*£)*28)+24,1});

6.1.3 GOTO statements

- 2 GOTO statewment serves to indicate that further processing
should continue at another part of the program, namely, at the
place of the label.

The following restrictions hold cencerning the applicability of
labels:

1} The scope of a label is the block within which it is
declared., It is, therefore, not possible to Jjump into
or out of a procedure or a function.

Z2) Jumps into and out of FOR statements are not allowed.

-1l4- BLS Pascal Programming Manual

3} Every label must be specified in a label declaration in
the heading of the block in which the label marks a
statement.

6,1,4 INIT statements

&n INIT statement serves te initialize an array structure teo a
set of censtant values. The constants and the components of the
array must be of identical type. Example:

VAR

data: ARRAY[1l,.6] OF INTEGER;:
BEGIN

INIT data TO 15,6,159,8,1,3;

-

ERD.

The above program is equal to:

VAR
data: ARRAY[1..6] OF INTEGER;
BEGIN
data[l]l:=15; datal2]:=6; data[3]:=19;
data[4]:=8; datal{5]:=1; datal[6]:=3;
END.

If less constants are specified than the total number of
components in the array, only the first components will be
initialized, Example:

VAR
numbers: ARRAY[@,.9] OF STRINGI[S];
BEGIN
INIT numbers TO empty,'one','two','three',"four','five’;

END,

When the INIT statement has been executed, the components of
numbers will have the following values:

numbers (@] =empty numbers{1l]="one'
numbers (2] ="two! numbers[3]="'three’
numbers[4]="four’ numbers[5]="five'
numiers[6] =empty numbers [7] =empty
numbers[8]=enpty . numbers [9]=empty

When initializing array structures with more than one dimension
the components will be processed with the rightmost dimension
increasing first. Example:

VAR

a: ARRAY([1..3,1..3] OF INTEGER;
BEGIN

INIT & TQ 9,6,8,15,18,33,7,10,1%;

BLS Pascal Programming Manual -15-

END.

The above program will initialize the components of a to:

ali,1]=9; all,2}=6; all,3]=8;
al2,1]1=15; al2,2)=18; al2,3]1=33;
al3,11=7; all,2]=18; al3,3]=19;

The INIT statement can in addition serve to initialize a section
of memory. Example:

INIT meml[base] TO $EF,$41,542,543,500,5C5;

Assuming that the variable base equals $DB@, the byte at $DBB
will equal $EF, the byte at $D@l will equal $41, etc., upon
completing the INIT statement.

6.1.5 Empty statements

The empty statement denotes no action and cccurs whenever the
syntax of Pascal requires a statement but no statement appears,
Examples:

BEGIN EKD;
WHILE digit AND (a>17} DO {nothing};:
REPEAT {wait} UNTIL keyboard;

6.2 STRUCTURED STATEMENTS

Structured statements are constructs composed of other
statements which have to be executed in sequence [compound
statements), conditionally {conditional statements}, or
repeatedly (repetitive statements).

6.2.1 Compound statements

The compound statement specifies that its ccmponent statements
are to be executed in the same seguence as they are written.
The symbols BEGIN and END act as statement brackets. Exzample:

BEGIN

z:=X; A:=y; y:=2; f{interchange values of x and y}
END;

The compound statement neither forbids nor requires a * semicolon
succeeding the last statement.

6.2.2 Conditional statements

A conditional statement selects for execution a single of its
component statements.

6.2.2.1 IP statements

The IF statement specifies that a statement be executed only if
a vcertain conditien (boolean expression) is true, TIf it is
false, then either no statement is to be executed, or the
statement fcollowing the symbol ELSE is to be executed.

The syntactic ambiguity arising from the construct

-16+- BLS Pascal Programming Manual

IP <el> THEN IF <e2> THEN <gl> ELSE <s52>
is resolved by evaluating

IF <el> is false, no statement is executed,.
IF <el> is true and <e2> is true, <sl> is executed.
IF <el> is true and <e2> is false, <s52> is executed.

Examples:

IF x<1.5 THEN z:=x+y ELSE z:=1.5;
IF name=empty THEN name:='Not stated';

6.2,.2,2 CASE, statements

The CASE statement consists of an expression (the selector) and
a list of statements, each labelled by a constant or a list of
constants of the type of the selector. It specifies that the
one statement be executed whose constant list contains the
current value of the selector. If no constant equals the wvalue
of the selector, contrel is given to the statement succeeding
the OTBERS: label, if it exists, Otherwise, no statement will
be executed.

valid selector types are integer, boolean, and string types
{reals are not allowed}. Examples:

CASE operator OF
YT xr=x+4y;
V-V Xi=x-y;
TR xi=x*y;
Y/ xi=x/y

END;

CASE number OF
1: write{'one');
2: write{'two');
3,4,5; write('some');
OTHERS: write('several'};
END;

The CASE statement neither forbids nor reguires a semicolon
succeeding the last statement.

6,2.3 Repetitive statements

Repetitive =statements specify that certain statements are to be
executed repeatedly. If the number of repetitions is Known
peforehand (i.e. pbefore the repetitions are started}, the FOR
statement is the appropriate construct to exXpress this
gsituation; otherwise, the WHILE or the REPEAT statement should
be used.

6.2.3.1 WHILE statements

The expression controlling repetition must be cf type boolean.
The statement ie repeatedly executed until the expression
becomes false. If ite value is false at the beginning, the
statement is not executed at all. Example:

-,

BLS Pascal Programming Manual -17-

WHILE a<1P8@ DO
BEGIN

asr=sqgrial; b:=b+l;
END;

6.2.3.2 REPEAT statements

The expression controlling repetition must be of type boolean.
The sequence of statements between the symbols REPEAT and UNTIL
is repeatedly executed (and at least once) until the expression
becomes true., Example:

REFEAT
read{digit); write{digit);
number :=number*1f+ord{digit)—-48;
UNTIL number>1898;

The REPEAT statement neither forbids nor reguires a gemicolon
succeeding the last statement.

$.2,3.3 FOR statements

The FOR statement indicates that the component statement is to
be repeatedly executed while a progression of values is assigned
to a variable which is called the control variable of . the FOR
statement. The progression can be up TG (succeeding) or DOWNTO
{preceding} a final value.

The contrel variable, the initial value, and the final value
must be of type integer.

If the initial value is greater than the final value when using
the TO clause, or if the initial wvalue is less than the final
value when using the DOWNTO clause, the component statement is
not executed at all.

Bxamples:
FOR i:=1 TO max DO writeln(i:5,sgr{i):8);

FOR i:=1 TC 168 DO FOR j:=1 TO 1# DO
BEGIN
IF ali,j}>5 THEN afi,j]l:=5;
count:=count+ali,j};
END;

Upon completion of a FOR statement the value of the contrel
variable is given by:

1) If the component statement was not executed the control
variable will egual the initial walue.

2] When using the TCO clause the contrel variable will egual
the final value plus one.

3) When wusing the DOWNTO clause the contrel variable will
equal the final value less one,

-18~ BLS Pascal Programming Manual

1: PROCEDURES

A procedure 1is a seperate program part which may be activated

from a procedure statement (see chapter 6.1.2}.
7.1 PROCEDURE DECLARATIONS
A procedure declaration generally consists of 3 parts:

1) The procedure heading.
2} The declaration part.
3} The statement part.

7.1.,1 The procedure heading

The procedure heading specifies the identifier naming the
procedure, an opticnal formal parameter list, and an opticnal
EXTERNAL or CODE specification.

The paramaters are either wvalue or variable parameters ([see
chapter 9}.

EXTERNAL specifies that the procedure is a seperate machine code
subroutine, which resides at the address given by the integer
constant following the EXTERNAL symbol (see appendix E). CODE
specifies that the procedure is listed in 2Z-80 machine code,
directly following the CODE symbol {see appendix E}. In the
case of EXTERNAL and CODE procedures the declaration part as
well as the statement part is empty.

7.1.2 The declaration part

The declaration part hag the same form as that of a Frogram.
All identifliers introduced in the formal parameter list and the
declaration part are local to the procedure declaration, which
is called the scope of these identifiers., They are not known
cutside their scope. A procedure declaration may reference any
constant, variable, procedure, or function identifier global to
it f{i.e. defined in an outer block), or it may choose to
redefine the name.

7.1.3 The statement part

The statement part specifies the algorithmic actions to be
executed upon activation of the procedure by a procedure
statement, The statement part takes the form of a compound
statement {see chapter 6.2.1). The use of a procedure
identifier in a procedure statement within the statement part
implies recursive execution of the procedure.

7.2 STANDARD PROCEDURES

A standard procedure need not be declared, and may be redefined
by the programmer by using its name ag a procedure identifier in
a procedure declaration.

call(a} Generate a call to the memory address given by
the integer expression a.

BLS Pascal Programming Manual -19-

screen{x,y} Move the cursor to line y, coloumn X. x and y
are integer expressions, If a coordinate wvalue
is illegal, the current value of this coordinate
is unchanged by the procedure activation. Thus
the screen procedure may be used as a tabulator
by zeroing the y-coordinate.

plot(x,v,f) %x,¥, and f are integer expressions. Alter the

state of the semigraphic pixel at x,y, according
to the value of f:

f=P: Reset x,¥y.
f=1: Set x.,y.
f=2: Invert Xx,¥.

The plot procedure compensates for the offset of
line 16 on the NASCOM display. Hence, pixels
with y-coordinates within the interval @B<=y<=2
resides on line 16, A procedure activation
invelving illegal wcoordinate wvalues will be
ignored.

out (p,d) Cutput least significant 8 bits of d to the port
given by the least significant 8 bits of p. p
and d are integer expressions.

The standard procedures supporting inpnt and output are
described in chapter 18.

-28- BLS Pascal Programming Manual

§: FUNCTIONS

A function is a program part which computes and returns a value.
Punctions are activated by the evaluatien of a function
designator (see chapter 5.5} which is a constituent of an
expression.

B.1 FUNCTION DECLARATIONS
A function declaration generally consists of 3 parts:

1) The function heading,
2) The declaration part.
1) The statement part.

8.1,1 The function heading

The function heading specifies the identifier naming the
function, an optional formal paramater list, the result type,
and an optional EXTERNAL or CODE specification.

The paramaters are either value or variable parameters {see
chapter 9).

The result type of the function can be either integer, boclean,
real, or string.

EXTERNAL specifies that the function is a seperate machine code
subroutine which resides at the address given by the integer
constant following the EXTERNAL symbol {see appendix Ej}. CODE
specifies that the function 1is listed in Z-80 machine code,
directly following the CODE symbol. In the case of EXTERNAL and

CODE functions the declaratien part as well as the statement
part is empty.

8.1.2 The declaration part

The declaration part has the same form as that of a procedure
{see chapter 7.1.2}.

B8,1,3 The statement part

The statement part takes the form of a compound statement (see
chapter 6.1.2). Within the statement part at least one
statement assigning a value to the function identifier must
occur. This assignment determines the result of the function.
The appearance of the function identifier in an expression
within the function itself implies recursive execution of the
function.

8.2 STANDARD FUNCTIONS
A standard function need not be declared, and may be redefined
by the programmer by using its name as a function identifier 1in
a function declaration.

8.2.1 Arithmetic functions

In the functions listed below the type of x must be either real

BLS Pascal Programming Manual -21-

or integer, and the type of the result is the type of x.
abs (x) Computes the absclute value of x.
sqr(x) Computes x*x.

In the functions listed below the type of % must be either real
or integer, and the type ¢of the result is real.

sin{x}) Sine,

cos(x) Cosine,

arctan(x} Arccus tangent.

In(z) Natural logatithm.

expi(x) Exponential function.

sqrt(x} Square root.

int{x) The whole part 0} X, i,e the result is the

greatest whole number less than or equal to x
for x>=08, and the least whole number greater
than or equal to x for x<@.

frac(x) The fracticnal part of x with the same sign as
x, l.e. fraci{xi=x-intix).

8.2.2 Integer functions

In the functions listed below the type of i is integer.

succ{i} Computes i+l. The type of the result is
integer,

pred(i} Computes i-1. The type of the result is
integer. '

odd{i) Returns the boolean value true if i is odd, or

the boolean value false if 1 is even,

8.2.3 String functions

length(s) Returns the length of the string s. The type of
the result is integer.

mid(s,p,n) Returns a string containing n characters copied
from s starting at the p'th positicon in s. The

type of 8 is string, and the type of n and p 1is
integer.

mid(s,p) Returns the leftmost cahracters copied from s
starting at the p'th positior in s. The type of
5 is5 string and the type of p is integer.

left{s,n) Returns the leftmost n characters copied from s.
The type of s is string and the type of n is
integer.

-22- BLS Pascal Proegramming Manual

right (s, n) Returns the rightmost n characters copled from
s, The type of s is string and the type of n is
integer.

concat(strs) strs is any number of string expressions

separated by commas. The result is a string
which is the concatenation of the parameters in
the same Sseguence as they are written,

8.2.4 Transfer functions

trunc{x) .The type of =x is real; the result 1is the
greatest integer less than or equal to x for
x»=@, and the least integer graeter than or
equal to x for x<@.

round(x) . The type of x is real; the result, of type
integer, is the value of x rounded, i.e.:

round{x) = trunc(x+8.5), for x>=9
trunci(x+0.5), for =x<@

ord{s) Returns the ASCII value of the leftmost
character in the string s. If s 1is empty the
result will be zero. The type of the result is
integer.

chr(i) Returns a string containing one character whose
ASCII value is i. The type of i is integer.

8.2.5 Further standard functions

addr (v) Returns the memory address of the variable v.
The memory address of an array can be calculated
by refertring to the first element of each
dimension.

random Returns a random number within the interval
#<=r<l, The type of the result is real,

randomii) Returns a random integer within the interval
P<=r<i. The type of the result is integer.

inp{p} Returns the value read from port p. p must be an
integer expression within the interval

B<=p<=255,., The type of the result is integer.

keyboard Scans the keyboard and returns the value of the
currently depressed key. If ne key is depressed
is returned. The ¢type of the result is
integer,

pointix,y) Returns the boolean value true if the
semigraphic pixel x,y is set, otherwise returns
the boolean wvalue false. The type of x and y
must be integer.

BLS Pascal Programming Manual -23-

5: PARAMETERS

Parameters provide a substitution mechanism that allows the
algorithmic actions of a precedure or a function {in this
chapter referred toc as a subprogram}) to be repeated with a
variation of its arguments,

9.1 FORMAL AND ACTUAL PARAMETERS

A procedure statement or a function designator may contain a
list of actual parameters, which are substituted for the
corresponding formal parameters that are defined@ in the heading
of the subprogram. The correspondance is established by the
positioning of the parameters in the lists of actual and formal
parameters,

9.2 PARAMETER TYPES

BLS Pascal supports two kinds of parameters: Value parameters
and variable parameters.

9.2,1 value parameters

When no symbol heads a formal parameter part of a subprogram
heading, the parameter(s) of this part are said to be value
parameters, In this case the actual parameter must be an
expression (of which a wvariable is a simple case). The
corresponding formal parameters represents a local variable in
the subprogram. As its initial value this variable receives the
current value of the corresponding actual parameter {i.e. the
value of the expression at the time of the call)}, The
subprogram may then change the value of this wvariable by
assigning to it; this will not, however, affect the value of the
actual parameter, Hence, a value parameter can never represent
a result of a computation.

Consider the folleowing procedure declaration:

PROCEDURE printline{width: INTEGER);:

BEGIN -
FOR width:=width DOWNTOD 1 DD write{'#*'):
writeln;

END;

The procedure statement "printline(a);" will bhave the same
effect as executing

width:=a;
FOR width:=width DOWNTO 1 DO write{"*'};
writeln;

Although the varjable width is altered during the procedure, the
varjable a will be left unchanged, as width is a value
parameter. As mentioned above the actual parameter need not be
a variable, but can be any expression, e.g, "printline{a+2*b);"
and "printline{25};".

9.2.2 Variable parameters

=24~ BLS PFascal Programming Manual

When the symbol VAR heads a formal parameter part of a
subprogram heading, the parameter{s}! of this part are said to be
variable parameters. In this case the actual parameter must be
a variable. The correspending formal parameter represents this
variable during the entire execution of the subprogram. Any
cperation invelving the formal parameter is preformed directly
upon the actual parameter, Hence, whenever a parameter is to
tepresent a result of the subprogram, it must be declared as a
variable parameter.

Consider the fellowing procedure declaration:

PROCEDURE swap{VAR x,y: REAL);
VAR temp: REAL;
BEGIN
temp:=x; x:=Yy; y:i=temp;
END;

The procedure statement "swapla,b);" will have the same effect
as executing "temp:=a; a:=b; b:=temp;". Obviously the statement
"swap{2@,a+b}:;" will vresult in an error, as the statements
"temp:=20; 2@:=atb; atb:=temp;" are impossible to execute,

9.3 RULES APPLYING TO PARAMETERS

The formal parameter list and the actual parameter 1list must
agree with respect +to the total number ¢of parameters and the
type of each of the parameters respectively.

All address calculation is done at the time of the call. Thus,
if a variable is a component of an array, its index
expression(s) is evaluated upon activating the subprogram.

In the case of a parameter being an array structure, the actual
parameter and the formal parameter must agree with respect to
component type and number of components. However the lower and

upper limits of each dimension, and the number of dimensions
need not agree,

If a formal parameter is a variable parameter of the type real,
the corresponding actual parameter may be an expression of the
type integer, This does not apply tc variable parameters.

If a formal parameter is a variable parmeter of the type string,
the corresponding actual parameter can be a string expression of
any length, However, if the length of the actual string
parameter 18 greater than the maximum length cof the formal
parameter, only the leftmost characters will be transferred.
This does not apply to variable parameters.

BLS Pascal Programming Manual -25-

19; INPUT AND QUTPUT

BLS Pascal allows for input and output by means of [our_sgandard
procedures {read, readln, write, and writeln). In additicn two
standard procedures (load and save) allows for loading and
saving of arrays from and to the tape recorder.

19.1 INPUT

Input is supported by the standard procedures read and readln.
12.1.1 The procedure read

The procedure read allows for strings and numeric values to be
input. The format of the procedure statement is:

read{vl,v2,,..,vn);
Which is equal to
BEGIN read(vl}; read(v2): ... read{vn) END;

During data entry the following control keys are available to
the user:

<BS> Backspace
<ESC> Clear line
<ENTER> Process entry

For a variable of one of the numeric types (real or integer) the
read procedure expects to read a string of characters which can
be 1interpreted as a numeric value of the same type., Leading
spaces are allowed. The numeric value should follow the rules
that apply to© numeric constants (see chapter 2.2}. The entry

must be terminated by & carriage return (i.e. <ENTER>)
immediately following the last character of the numeric valge.
The carriage return 1is not echoed. If the interpretation

results in an error the entry field will be cleared, indicating
that the user is to re-enter the wvalue.

when reading strings with a maximum length greater than one,
read will accept all characters up to but not including the
terminating carriage return. The maximum number of characters
which can be entered is given by the maximum length of the
strimg variable {however, not more than 63 characters).

When reading strings with & maximum length of one program
execution will resume the moment the user depresses a key., The
character read will not be echoed.

18.1.2 The procedure readln

The procedure readln is identical te read, except that after a
value has been read a carriage return is output. The format of
the procedure statement is:

readin{vl,v2,...,vn};

which is egual to

~35= BLS Pascal Programming Manual

BEGIN readlni{vl); readln{v2}; ... readln(vn} END;
18 .2 COTEOT

Output is supported by the standard procedures write and
writeln.

ig.2.1 The procedure write

‘"he procedure write allows strings and numeric values to be
nutput. The format of the procedure statement is:

write{plep2 ... p0j:
which 15 egual to

BEGIN writei{pl}; writei{p2); ... write({pn) END;
plip2:...,pn denote so-called write parameters, which, according
to the type of the value to be output, can take en one cof the
follewing formats (m:. n, and i denote integer expressions, r

denclte a real expression, and s denote a string expression):

i The decimal representation ¢f i is output with no
preceding blanks.

iin The decimal representation of i is output preceded
Loy an appropriate number of blanks to make the field
wideh n.

I The decimal representation of r is output in

floating point format in a field of 18 characters:

? sd.ddddddddddEtdd”

L H_H

where & stands for either or "=", d stands for a
digit, and t stands for either "+" or "-".

The decimal representation of r is output in
fleating point format. The field width and the
number of significant digits depends on the value of
iz

Lal
=

n<@: "d,dEtdd" or "-d.dEtgd”

#<=n<17: "sd.<digits>BEtdd™, where <digits>
denotes n-6 decimal digits.

n>17: "¢{spaces>d.ddddddddddEtdd”, where
<spaces> denotes n-17 blanks.

Linsm The decimal representation of r is cutput in fixed
point format with m digits after the decimal point
in a field of n c¢haracters, wm must Dbe within the
interval P<=m<=24. If not, floating point format is
used.

=S 5 is output with no preceding blanks.

sin 5 is output preceded by an apprepriate number of

BLS Pascal Programming Manual -27-

blanks to make the field width n.
18.2.2 The procedure writeln
The procedure writeln is identical to write, except that after
the last wvalue has been written, a carriage return is output.
The format of the procedure statement is:
writeln{pl,p2,....pn};:
which is equal to

BEGIN write(pl}; write{p2); ... writeln{pn) END;

To produce a single carriage return the user may call writeln
without any parameters.,

18.3 SAVING AND LOADING ARRAYS

Input and output of arrays from and to the tape recorder are
supported by the standard procedures load and save.

18.3.1 The procedure save

The procedure save will output arrays of any type to the tape
recotder. The format of the procedure statement is:

savefal:

where a denotes an array identifier, Upon activation of the
procedure the tape LED will be switched on, a brief pause will
be issued, the array will be output, and the tape LED will he
switched off.

14.3.2 The procedure load

The procedure lcad will read a tape previously written by the
save procedure, The format of the procedure statement iss

load(a,i);

where a denotes an array i1dentifier, and i denotes the
identifier of an integer variable in which an error status will
be returned.

Upon activation of the procedure the tape LED will be switched
on. When the procedure ends the tape LED will be switched offE,
and the wvariable 1 will contain the error status of the
procedure call:

i=f: No errcrs occcured,

i=l: Type mismatch. The number of <omponents or the
compohent type does not agree.

i=2: Checksum error.

i=3: The procedure was aborted by the user pressing the

<ESC» key.

-28- BLS Pascal Programming Manual

APPENDIX A; BLS PASCAL SYNTAX

The syntax of BLS Pascal is presented using BNF formalism. The
following symbols are meta-symbols belonging to the BNF
formalism, and not symbols of the Pascal language:

HEE Means 'is defined as'.
| Means 'or’.
{e0d} Denotes possible repetition of the enclosed

symbols zero or more times.

The symbol <character> denotes any printable character, i.e.
a character with an ASCII value between $20 and $FF.

{letter>

=

BIlC
| |
I |
! |

= | '
—_—
opO—
oo —
o 0no—
—_—
f oo —
—_——m
mmwn—
o X —
———
M e —
———=
A e
——

g3 =

<digit> ;:= @ | 1| 213|415 |6 |T7Tt8BI!9
<hexdigit> ::= <digit> | 2 | B | C | D | E|F
<empty> :z:=

{program> ::= <program heading> <block> .

<program heading> ::= <empty> | PROGRAM [<character> }

£

<{block> ::= <declaration part> <statement part>

{declaration part> ::= <label declaration part>
<constant definition part> <variable declaration part>
{procedure and function declaration part>

<label declaration part> ::= <empty> | LABEL <label> { , <label> }

<label> ::= <unsigned integer> | <identifier>

{unsigned integer> ::= <digit> { <digit> }

<identifier> ::= <letter> { <letter or digit> 1}

<letter or digit> r:= <{letter> | <digit> | .

<congtant definition part> ::= empty |
CONST <constant definition> ; { <constant definition> ; }

<constant definition> ::= <identifier> = <constant>

<ceonstant> ::= <unsigned numbetr> | <gign> <unsigned number> |
<constant identifier> | <sign> <ccnstant identifier> |
{string>

<unsigned number> ::= <unsigned integer> | <unsigned real> |
<unsigned hexinteger>

<unsigned real> ::= <unsigned integer> . <digit> { <digit> } |
<unsigned integer> . <digit>» { <digit> |} E <scale factor>
<unsigned integer> E <scale factor>

BLS Pascal Programming Manual -29~

<scale factor> ::= <unsigned integer> | <sign> <unsigned integer>

<sign> 1:= + | -

<unsigned hexinteger> ::= $ <hexdigit> { <hexdigit> }
<constant identifier> ::= <identifier>
<{string> ::= ' { <character> } '

<variable declaration part> ::= <empty> |
VAR <variable declaration> ; | <variable declaration> ; }

<yariable declaration> ::= <identifier> { , <identifier> } : <type>
{type> :1:= <simple type> | <structured type>

<simple type> ::= INTEGER | REAL | BOOLEAN | <string type>

¢string type> ::= STRING [<constant>]

<structured type> ::= ARRAY [<index type> { , <index type> }] OF
<simple type>

<index type> ::= <constant> .. <constant>

{procedure and function declaration part> ::=
<procedure or function declaration> ; }

<{procedure or function declaration)> ::=
<procedure declaration> | <function declacation>

<procedure declaration> ::= <procedure heading> <block>
{procedure heading> ::= PROCEDURE <identifier>
<formal parameter list> ; | PROCEDURE <identifier>
<formal parameter list> ; <external/code specification> ;

<formal parameter list> ::= <{empty> |
{ <formal parameter part> { ; <formal parameter part> })

<formal parameter part> ::= <{parameter group> |
VAR <parameter group>

<parameter groupr ::= <variable declaraticn>

<external/code specification> ::= <external specification> |
<code specification>

<external specification> ::= EXTERNAL <constant>
<code specification> ::= CODE <constant> { , <constant> }
<function declaration> ::= <function heading> <block>
<function heading> ::= FUNCTION <identifier>
<formal parameter list> : <{result type> ; | FUNCTION
{identifier> <formal parameter list> : <result type> ;
<external/code specification> ;

<result type> ::= <simple type>

-38- BLS Pascal Programming Manual
<statement part> ::= <{compound statement>
{compound statement> ::= BEGIN <statement> { ; <statement> } END

<statement> ::= { <label> : } <unlabelled statementy

<unlabelled statement> ::= <simple statenent> |
{structured statement>

<gsimple statement> ::= <assignment statetement> |
<procedure statement> | <goto statement> |
<init statement> | <empty statement>

<assignment statement> ::= <variable> := <expression> |
<function identifier> := <{expression>

<variable> ::= <simple variable> | <component variable’>
<simple variable> ::= <identifier>

<compenent wvariable> ::= <array identifier> [<expression>
{ , <expression> }]

<array identifier®» ::= <identifier>
<function identifier> ::= <identifier>

<expression> ::= <simple expression> | <simple expression>
<relational operator> <simple expression>

<relational operator> ::= = | <& | > j < | »= | <=

{simple expression> ::= <term> { <adding operator> <term> }
<adding operator> ::= + | - | OR | EXOR

<term> ::= <factor> { <multiplying operator> <factor> }
<multiplying operator> z:= * | / | DIV | MOD | AND | SHIFT
<factor> ::= <uncomplemented factor> [NOT <uncomplemented factor>

{uncomplemented factor> ::= <unsigned factor> |
<sign> <unsigned factor>

<unsigned factor> ::= <variable> | <unsigned constant> |
{ <expression>) | <function designator>

<unsigned constant> ::= <unsigned number> | <string> |
<constant identifier>

<function designator> :;:= <function identifier>
<actual parameter list>

{actual parameter list> ::= <empty> | { <actual parameter>
{ + <actual parameter> |)

<actual parameter> ::= <expression® | <variable> |
<array identifier>

<procedure statement> ::= <{procedure identifier>
<actual parameter list>

BLS Pascal Programming Manual -31-

<gotc statement’> ::;= GOTO <label>

<init statement> ::= INIT <array identifier> TO <constant list> |
INIT MEM [<expression>] TO <constant list>

<constant list> ::= <constant> { , <constant> }
<enpty statement> ::= <empty>

<structured statement> ::= <compound statement> |
<conditional statement> | <repetitive statement>

<conditional statement> ::= <if statement> | <case statement>

<if statement> ::= IF <{expression> THEN <statement> |
IF <expression> THEN <{statement> ELSE <statement>

{case statement> ::= CASE <expression> OF <case list>» END |
CASE <expression> OF <case list» ; OTHERS: <statement> END

<case list> ::= <case list element> { ; <case list element> }
{case list element> ::= <{constant list> : <{statement>

<repetitive statement> ::= <while statement> | <repeat statement> |
<for statement>

<{while statement> ::= WHILE <expressiocn> DO <(statement>

{repeat statement> ::= REPEAT <statement> { ; <statement> }
UNTIL <expression>

<for statement> ::= FOR <control variable> := <for list> DO
<statement>

<contrel variakler ::= <variahble>

<for list> ::= <initial walue> TO <final value> |
<initial value> DOWNTO <final value>

<initial value> ::= <expression>

<final value> ::= <expression>

=32~ BLS Pascal Programming Manual

{ value will convert the decimal number contained in s into }
{ a real value

FUNCTION value{s: STRING[48]): REAL;

CONST

zero=48; { ASCII zero }
VAR

r,f: REAL;

p: INTEGER;
ch: STRINGI1];
neg,decpoint: BOOLEAN;

PROCEDURE nextchar;

BEGIN

p:=pred(p); ch:=mid(s,p,1}
END;
BEGIN

f:=1; nextchar;

IF ch='~' THEW

BEGIN neg:=true; nextchar END;
WHILE {(ch>»='@"') AND (ch<='9') DC
BEGIN
r:=r*1@.9+{ord{ch)-zero};
IF decpoint THEN f:=£*18,8;
nextchar:
IF {(ch="'.') AND NOT decpoint THEN
BEGIN decpoint:=true; nextchar END;
END;
IF neg THEN value:=-r/f ELSE value:=r/f;
END { of value };

{ pos will return the position of the first occurrance of }
{ the target string t in the source string s, If t does not }
{ oceur within s, a zero will be returned b

FUNCTION pos{t,s: STRING[48])}: INTEGER;
LABEL exitpos;
VAR
1dif,1t,p: INTEGER;
BEGIN
lt:=length{t}); ldif:=lengthi{s)~-1t;
WHILE p<=1dif DO
pi=succip);
IF mid{s,p,lt)=t THEN
~ BEGIN pos:=p; GOTC exitpcs END
END;
exitpos:
END { of pos };

T

BLS Pascal Programming Manual

{f topline will display the string s on line 16 of the }
{ NASCOM display H

PROCEDURE topline(s: STRING[48]);
CONST
toplineaddr=5BC%; { topline address - 1 }
blank=32; { ASCII blank }
VAR
p: INTEGER;
BEGIN
FOR p:=1 TO length(s} DO
mem|[p+toplineaddr] :=ord{midis,p,1)):
FOR p:=p TO 48 DO
mem [p+toplineaddr]:=blank;
END;

=33 =

-34- BLS Pascal Programming Manual
APPENDIX C: THE SYSTEM WORKSFACE

The system workspace recides between 5C88 and $DBB. 1In this
area the following addresses may bhe of interest to the user:

C92-C93 WSP The program workspace stack pointer. When
executing a program WSP will be set to peoint to
the end address of the program, Each time a
program block is activated {the main program, a
procedure, or a function), WSP will move to a
higher address, thus reserving memery for the
variables of that program part. When exiting
the block, WSP will be altered to point to its
criginal position.

C94~C95 PMTP The highest RAM address the currently executing
program is allowed to access. Should WSP move
beyond PMTP, the program will break and display
a runtime error {runtime error 99).

C98-~CY9B RNDN The last calculated random seed. By
initializing these four bytes (to an abitrary
selected wvalue) the user «can obtain the same
random sequence each time the program is run.

The first instruction sequence in the object code of a program
is a call to the initializing routine, followed by % bytes of
parameters:

CD xx xX aa bb cc dd ee

bbaa is the end address of the program. WSP will be initialized
to this walue. ddcc is the highest RAM address the program is
allowed to access (ddcc is obtained from MTOP (see BLS Pascal
User Manual, appendix <€)} during compilation). PMTP will be
initialized to this value. ee is a byte telling the runtime
package where to transfer control teo, in case of a runtime
error, or when completing execution of the program. If ee 1is
zeroc a jump to the lanquage system will be executed, otherwise
control will be transferred to NAS-SYS.

The area between $D@@ and $1€80 is reserved for the systen
stack. Upon initialization the stack pointer will be loaded
with $188€. The following applies concerning the use of the
system stack area:

2 procedure or a function call consumes two bytes of stack.
An active FOR]loop consumes four bytes of stack.

When evaluating an expression the stack will be used to
store intermediate results. Hence, a «comparison of two
strings, may consume as much as 512 bytes, if both strings
are of length 255,

During program execution the position of the stack pointer will

not be checked. Thus, the user must be shure that recursive
execution of procedures or functions does not enter a loop with
no exits.

BLS Pascal Programming Manual -35-

APPENDIX D: INTERNAL DATA FORMAT

In the descriptions following below the symbol 'addr'_ denotes
the address of the first byte a variable of the described type
consumes. It is this value the standard function addr returns.

Integers and booleans:

Internally BLS Pascal does not differ between Integers apd
booleans. An integer is stored as a 2's complement 16 bit
number, thus consuming 2 bytes. The least significant byte is
stored first, as the Z-8@ standard specifies:

addr Least significant byte.
addr+1 Most significant byte.

Reals:

A real is stored as a 48 bit mantissa and an B bit 2's exponent,
thus consuming 6 bytes:

addr Most significant byte of mantissa.

addr+4 Least significant byte of mantissa.
addr+5 2's exponent.

The exponent is in binary format with an offset of $80. _ Hence,
an exponent of $84 means that the value of the mantissa is to be
multiplied by 2°($84-$88) = 274 = 16. An exponent value of zero
indicates that the the value of the variable is zero. The value
of the mantissa can be obtained by dividing the Aunsigned
integer, consisting of the first five bytes, by 2748. The
mantissa is always normalized, i.e. the most siginificant bit
should be interpreted is a 1. However, the sign of the mantissa
is stored in this bit, a 1 indicating that the wvalue 1is
negative, and a2 P indicating that the value is positive,

Strings:

A string will consume its maximum length plus one bytes of
storage, The first byte contains the current length eof the
string (called n)}, the second byte contains the n'th character
of the string, the third byte contains the n-1'th character,
etc.,

addr Curzrent length (n}.

addr+1 n'th character,
adde+2 n-1'th character.

addr+n First character.

1f the current length of the string is less than the maximum
length, the contents of the unused bytes are unknown.

Arrays:

A component of an array uses the same internal format as a

=36~ BLS Pascal Programming Manual

simple variable of that specific type. The components with the
lowest 1index values will be stored first. An array with more
than one dimension will be stored with the rightmost dimension
increasing first. E.q. an array declared as:

a; ARRAY[1..3,1..23]
will be stored in this order:

lowest addr. afl,l)
all,2]
all,3]
al2,1]
afz,2]

highest addr. a[3,3]

BLS Pascal Programming Manual -37-

APPENDIX E: MACHINE CODE SUBROUTINES

Declaring procedures and functions with the EATERNAL or the CODE
specification allows the user to call seperate machine code
subroutines.

Parameters are transferred to the subroutine using the program
workspace stack. Each parameter value is 'pushed’ onto the
stack, in the same order as they appear. When evaluating a
function designator, memory space for the result value is
reserved, before any parameters are pushed. The machine code
routine may access the parameters by indexing from the wvalue
contained in WSP {see appendix C}.

The format of a value parameter is described in appendix D. 1In
the case of a variable parameter a word (2 bytes) will be pushed
containing the absclute address of the first byte of the
referenced variable., If the variable parameter is an array, the
absolute address of the first component will be pushed.

Assume that the following function declaration has been made:

FUNCTION test(VAR i: INTEGER; r: REAL): STRING[16];
EXTERNAL 5D80;

When evaluating the function designator a call will be placed to
$D@B, and the top of the workspace stack will be organised in
the following manner:

lowest addr. WSP-25 17 bytes reserved for the result
: value {of type string). These
: bytes are cleared at the time of
WSP-% the call.

WSP-8 A word containing the address of
WSP-9 the integer variable.

WSP-6 Value of type real.

highest addz. WSP-1

The address of the first byte of the locations reserved for the
regult may be calculated like this:

W5P: EQU @C92BH

LD HL, (W5P)
LD DE,-25
apDp HL,DE

When executing the code HL will point to the first byte. The
address of the integer variable can be obtained by executing:

LD HL, {(WSP}
LD DE,-8
ADD HL,DE
LD A, (HL)

-3g- BLS Pascal Programming Manual
INC HL
LD Hy (HL}
LD L,A

As an example of user written machine code subroutines two
routines are shown below which will input and output values from
and to the data ports (NOTE: These routines are predeclared in
BLS5 Pascal, see chapters 8.2.5 and 7.2). In the main program
the following declaraticons should be made:

PROCEDURE ount(port,data: INTEGER); EXTERNAL SDOd;
FUNCTION inp{port: INTEGER): INTEGER; EXTERNAL $DED;

The machine code subroutines could be like this:

po@l SDAR ORG @D@BH
2682

pAB3 - =8¢92 WSP: EQU 8C92H
BBo4

GPG5 GDEG DD2AY2PC OUTP: LD IX, (WSP)
@006 @DP4 DDTEFE LD A, (1X-2)
G697 8DB7 DD4EFC W C,(IX-4)
G298 BDPA EDT9 OUT (C),A
@¢g9 @DBC C9Y RET

4p1¢

@#1l ADAD DD2AY26C INP: LD IX,{WSP)
2612 9D11 DD4EFE LD €, {1%-2)
BP13 @014 EDTS N A, (C)
2914 @D1l6 DDT7FC LD (IX-4),A
g@15 #D19 C9 RET

2016

2017 BD1A END

The above routines c¢an alsc be implemented using the CODE
specification:

PROCEDURE ocut (port,data: INTEGER);
CODE $DD, $2A,$92, $0C, 5DD, S7E, $FE, $DD, S4E, $FC, $ED, $75;

FUNCTION inp{port: INTEGER): INTEGER;
CODE $DD, $2A,$92,50C, $DD, $4E, $SFE, $ED, $78, $DD, $77,5FC;

It is important to note that conly fully relocateable routines
can be implemented using the CODE specification. Alsoc note that
the RET instructicn ($C3%) ending an EXTERNAL rcutine must not be
used in the case of a CODE toutine.

All RAM Dbetween WSP and PMTP can be used as workspace by the
machine code routine.

The object code produced by the compiler, as well as the runtime
package routineg, are fully interruptable. If using interrupts,
the interrupt service routine must save all registers to be used
on the stack.

ELS Pascal Programming Manual -39-

APPENDIX E: BENCHMARE TESTS

On the following pages the 15 Pascal benchmark tests, as
proposed in Personal Computer World december 1988 issue, are
listed. The timings obtainedé using a NHASCOM 2 (Z-B9
microprocessor, 4 MHz 1 waitstate}, are listed below, and, for
comparison, the corresponding timings obtained on a Heathkit
H-11A (LSI 112 16 bit processor), and on an APPLE 2 (6582
microprocessor), both running UCSD Pascal. All timings are
listed in seconds:

TEST BLS Pascal H3-11A APPLE 2
magnifier 8.8 © 3.9 6.4
forloop 8.6 42.8 74.3
whileloop 23.8 40.1 78,8
repeatloop 2¢.8 35.8 63,3
litteralassign 11.7 5p.P B8.5
memoryaccess 15.1 52.9 91.9@
realarithmetic 59.8 61.7 93.9
realalgebra 58.5 48.6 83.4
vector 62,2 ip2.9 2083.3
equalif 24.3 66.8 116.7
unequalif 24.2 65.8 115.3
noparameters 6.8 26.4 - 54,2
value 12.5 29.3 54.4
reference 12,1 29.7 55.3
maths 65.3 25.8 66.0

It should be noted that UCSD Pascal provides only 6+ significant
digits when operating on reals, while BLS Pascal provides 1l+
significant digits.

-48- BLS Pascal Programming Manual

PROGERAM magnifier;
VAR k: INTEGER;
BEGIN
FOR k:=1 TQ 10888 DO:
END.

PROGRAM forloop:;
VAR j,k: INTEGER;
BEGIN
FOR k:=1 TC 18204 DO FOR j:=1 TCO 18 DO;
END.,

PROGRAM whilelocop;
VAR j,k: INTEGER;

BEGIN
FOR k:=1 TO 18688 DO
BEGIN
j:=1; WHILE j<=10 DO j:=j+1
END
END,

PROGRAM repeatloop;
VAR j,k: INTEGER;

BEGIN
FOR k:=1 T0 18988 DO
BEGIN
j:=1; REPEAT j:=j+1 UNTIL j>18;
END;
END,

PROGRAM litteralassign;
VAR j,k,l: INTEGER:
BEGIN
FOR k:=1 TO 188P% DO FOR j:=1 TO 19 DO 1:=8
ERD,

PROGRAM memoryaccess;
VAR j,k,1: INTEGER;
BEGIN
FOR k:=1 TO 18980 DO FOR j:=1 TO 18 DO l:=j
END. .

PROGRAM realarithmetic;
VAR k: INTEGER; x: REAL;
BEGIN
FOR k:=1 TO 1P880 DO x:=k/2*3+4-5;
END.

PROGRAM realalgebra;
VAR k: INTEGER:; x: REAL;
BEGIN
FOR k:=1 TO 16009 DO x:=k/X*k+k-k;
END,

PROGRAM vector;

VAR k,j: INTEGER; matrix: ARRAY[B..l12] OF INTEGER;

BEGIN
matrix([@]):=1;
FOR k:=1 TO 1@A@8 DO FOR j:=1 TP 1@ DO
matrix{jl:=matrixfj-1]

BLS Pascal Programming Manual

END.

FROGRAM equalif;

VAR j.k,;1: INTEGER;

BEGIN
FOR k:=1 TO 18868 DO FOR j:=1 TO
IF j<6 THEN 1:=1 ELSE }l:=9

END.

PROGRAM unegqualif;

VAR j,k,1l: INTEGER;

BEGIN
FOR k:=1 TC 1é@P® DO FOR j:=1 TO
IF j<2 THEN l:=1 ELSE 1:=8

END.

PROGRAM ncoparameters;
VAR j,k: INTEGER;
PROCEDURE noneb; BEGIN j:=1 END:
PROCEDURE none4; BEGIN none5 END;
PROCEDURE none3; BEGIN noned END;
PROCEDURE none2; BEGIN ncne3 END;
PROCEDURE ncnel:; BEGIN none? END;
BEGIN

FOR k:=1 TC 190880 DO nonel:
END,

PROGREM value;
VAR j,k: INTEGER;
PROCEDURE valueS5(i: INTEGER); BEGI
PROCEDURE valued(i: INTEGER):; BEGI
PROCEDURE valued({i: INTEGER); BEGI
PROCEDURE value2({i: INTEGER); BEGI
PROCEDURE valuel{i: INTEGER); BEGI
BEGIN

FOR k:=1 TG 100882 DO valuel(j)
END. .

FROGRAM reference;
VAR j,k: INTEGER;
PROCEDURE refer5 (VAR i: INTEGER);
PROCEDURE refer4 (VAR i: INTEGER);
PROCEDURE refer3 (VAR i: INTEGER]);
PROCEDURE refer2(VAR i: INTEGER);
PROCEDURE referl (VAR i: INTEGER):
BEGIN

FOR k:=1 TO 10888 DO referl(j)
END.

PROGRAM maths;
VAR k: INTEGER; x,y: REAL;
BEGINH -
FOR k:=1 TC 1869 DC
BEGIN
x:=sin(k); y:=expix)
END
ENHD.

1¢ DO

16 DO

N i:=1 END;
N value5(i)
N valued (i)
N value3 (i)
B value2(i)

END;
END;
END;
END;

BEGIN i:=1 ERD;
BEGIN refer5(i}
BEGIN referd4(i)
BEGIN referd (i}
BEGIN refer2iil

END;
END;
END;
END;

-42-

og

Bl
B2
B3
B4
a5
117
B7
B8
P9
19
11

29
21
22
23
24
25

38
31
32
33

40
51
42
43
44
45
16
47
48
49
59

68
61
62
63
64
65

66
78
71
72
ge

99

BLS Pascal Programming Mantal

H M ER_ERR E

FIND address found.

Syntax error {e,g., missing ';' in the line above},
'=' expected,
':+' expected.
'[' expected.
expected,
expected.
expected,
expacted.
expected,
' expected.
="' expected.

Lower limit greater than upper limit in array declaration.
Overflow in array declaration.

'OF' missing in array declaration.

Illegal character in identifier.

String length cannot be zero.

Unknown data type.

Constant of type integer expected.

Constant of type string expected.

Constant of type real expected.

Integer constant should be within the interval P<{=i<=255.

'BEGIN' expected.

'THEN' missing in if statement.

Case selector must be of type integer or of type string.
'OF' missing in case statement.

'END' missing in case statement.

DO’ missing in while statement.

Varible of type integer expected.

"TO" or '"DOWNTO' missing in for statement.
'DO' missing in for statement,

Labe]l identifier has not been declared.
'TO* missing in init statement.

Type string not allowed here,

Expression of type integer expected.

Expression of type string expected,

Type mismatch in expression,

Unknown identifier in expression.

Syntax error or overflow in numeric constant, or string
constant contains a carriage return.

String constant teo long,

Type mismatch in assignment or parameter list.
Unknown wvariable identifier.

Unknown array identifier.

Label declared and referenced but not defined.

Unexpected end of scurce text.

BLS Pascal Preogramming Manual

-43-

APPENDIX H: RUNIJME ERROR MESSAGES

Bl
22
83
o4

85

1@

29
99

Floating point overflow.

Pivision by zero attempted.

Attempt to calculate the square root of a negative number.
Attempt to calculate the natural logarithm of a negative or
zero number.

Attempt to convert a real value outside the integer range
inte an integer.

The resulting string at a concat function call is longer
that 255 characters, or the position at a mid functicn call
is less than or equal to zero,

An array index is outside range.

Workspace overflow. All available RAM has been used.

Software Reglistration XForm

The Blue Label Soltware Pascal Language System, version '
serial number » i8 copyrighted and all rights are

reserved by Poly-Datas microcenter ApS.

Name and address:

pereby agrees 523 to sell, rent, or otherwise distribute the
above mentioned program, or any part hereof, in any form, without

prior written consent of Poly-Data microcenter ApS.

SIGHED AND AZRGEED:

FEERCTROVAERE w{mﬁ

28 &t Judez Road, Englefield Green
CaHAM, SURREY TW20 CHE

Telephone: Ceham 33603 Telex: 26447

Reg'd in Ergland No. 1047769
VAT Registration Mo, 211 5797 71

Fmt‘ _.

Qs€COo

Software

NASCOM PASCAL

NASCOM PASCAL is a complete 12K Pascal
language system, designed specially for the
NASCOM 1 or 2 with NAS-5Y5 1 or NAS-SYS 3
monitor. NASCOM PASCAL is based on the
high-level programming language Pascal, widely
recognized -as the programming language of the
future.

NASCOM PASCAL basically consists of a runtime
package (4.5K), a control program (0.5K), an
on-screen editor (1.5K) and a compiler (5.5K).

The compiler is a one pass compiler which

directly produces Z-80 machine code. This
architecture not only provide very fast compilation

Briefly, the NASCOM PASCAL subset includes:

Language System

(2000 lines pr. minute)}, but also results in program
execution speeds 3 to 20 times faster than
equivalent BASIC programs.

in 55K only it is, of course, not possible to
implement standard Pascal. The NASCOM
PASCAL subset does not support user defineable
types, sets, and file types. However, all basic
statement constructions are retained, and
procedures/functions are fully recursive and
support both variable and value parameters. The
fundamental data types INTEGER, REAL and
BOOLEAN are likewise supported, while the type
CHAR has been replaced by the type STRING,
which offers a more flexible character handling.

Statements: BEGIN .. END IF .. THEN .. ELSE WHILE . . DO
FOR .. TO/DOWNTO .. DO REPEAT . . UNTIL GOTO
CASE .. OF .. OTHERS INIT..TO Assignment (=)
Procedure statements

Data types: REAL INTEGER STRING BOOLEAN ARRAY

Constants: MAXINT Pl TRUE FALSE EMPTY

Operators: + — * / DIV MOD SHIFT AND OR
EXOR = < > < == <=

Procedures: - WRITE WRITELN READ READLN LOAD SAVE
CALL SCREEN PLOT ouT .

Functions: ABS SQR SQRT SIN cos ARCTAN LN
EXP INT FRAC SUcCc PRED ODD TRUNC
ROUND ORD CHR LENGTH MID LEFT RIGHT
CONCAT RANDOM ADDR POINT INP KEYBOARD

Declarations: LABEL CONST VAR PROCEDURE FUNCTION

Reals provide 11.5 significant digits. Integers are
within the range —32768 to 32767 (16 bits).

may have any number of dimensions, and can be
of any of the types INTEGER, REAL, BOOLEAN,
ot STRING. Constants may be presented in either
decimal or hex notation. User written machine

code subroutines are supported using procedures/
functions declared as EXTERNAL or CODE. Thus,

" SEi™Gs can be up to 255 characterstong. Arrays——a machine-eode subprogram is treated by the

compiler as a normal procedure or function. The
procedure WRITELN allows for numbers or
strings to be output using a specific format.

NASCOM PASCAL

The compiler can be invoked in several different
modes. The COMPILE and the RUN commands
will load the object code directly into memory
after the source text, allowing you to execute your
programs almost immediately. The TAPEcommand
will output the object code to the tape recorder,
using NAS-SYS block format. When the com-
piler is invoked from a FIND command it will

. locate-the statement-that caused-the most-rgcent— — -

runtime error. The object code produced by
NASCOM PASCAL requires only the runtime
package to be present in memory during execution.
Once a program is tested it can be merged to the
runtime package to form a directly executeable
machine code program.

The NASCOM PASCAL editor is a very powerful

on-screen editor. Apart from being able to scroll

up and down over the text, the display can scroll

to the left and to the right, allowing lines to be up

to 80 characters in length. Blocks can be marked

and deleted or copied to any other location in the

source text. A build-in tabulator eases source

text entry, and the GRAPH key can be selected to

operate as a CAPS-LOCK key, which, when

depressed, reverts the SHIFT key function. The

find command will locate any target string in the

source text. Optionally, the continue command

can be used to find further occurrances. The

editor reacts to 27 different commands, all of

___which _are_ control-characters, ie. _characters

1 produced by depressing CTRL and another key.

or by depressing ENTER, BS, ESC, etc. This
greatly simplifies command entry.

Language System

Program texts can be saved using file names of up
to 60 characters. When a program is loaded it is
merged to the end of the current program, thus
allowing you to maintain a library of separate
subroutines.

NASCOM PASCAL is meant to offer an alterna-

tive to BASIC. Programs written in NASCOM
PASCAL will- execute” much- faster-than their - -
BASIC counterparts, and better programming
techniques can be practised, as Pascal is far
more versatile than BASIC, Compared to other
Pascals the NASCOM PASCAL offers a lot mare
features in the same amount of memory, and
shows Benchmark timings comparable to those
obtained on 16-bit mini computers.

NASCOM PASCAL is available in two versions:
A tape version, which resides in memory from
1000H to 3FFFH, and an EPROM version, which
is situated between DOOOH and FFFFH. The
EPROM version is supplied in 6 2716 EPROMSs,
together with instructions to fit the EPROMs on
the NASCOM 2 main PCB by paging the top 12K
of memory into two banks {NASCOM PASCAL
in one bank and NASCOM BASIC plus an
assembler in another bank). The documentation
consists of two printed manuals: An Operating
Manual {17 pages), which describes how to
operate the system, and a Programming Manual

(40 pages), which describes the NASCOM

PASCAL subset.

Lucas Logic

Lucas Logic Limited
Welton Road Wedgnock Industrial Estate
Warwick CV34 5PZ

Tel; Warwick {0926) 497733

Telex: 312333

Due to a policy of continued improvement, Lucas

Logic Limited reserve the

right to amend the

specifications of all products without notice.

Publication No. 4117 © Lucas Logic Limitsd 1982

Printed in England 10M/482/DL

